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The authors attempt to formulate a theory of evaporation of moisture from capillary-porous substances
based on the transport equations for water in liquid and vapor form in the pore space of a model of the

system.

This paper is concerned with the rate of evaporation of water from certain models of capillary-porous substances.
Our method differs from published work [1] in seeking a solution based on the transport equations for mosture in liquid
and vapor form in the pore space of models of the porous media. Our first model consists of a system of vertical capil-
laries of different radii ry and r, interconnected throughout their length.

If the relative humidity of the air in the surrounding medium is held constant at ¢, < 1, evaporation of moisture
from the surface of the capillaries begins, and concave menisci are formed. If ¢, is less than the relative vapor pressure
¥y above the menisci of limiting curvature in the large capillaries, then further evaporation leads to a lowering of the
level of the menisci, characterized by the coordinate X. For isothermal conditions, the amount of moisture evaporated
from the large capillaries is
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The relative humidity of the air is

®; = exp(— 25 M/p RTry).

Let us assume that the capillary walls are fully wetted with water, and that the size of the large capillaries is such that
the effect of film transport of moisture may be neglected [2, 3].

Until the difference in capillary pressure at the menisci of the small and large capillaries is sufficient to draw up
to height X as much water as can be evaporated from the small capillaries, the position of the menisci in these capil-
laries (which gradually become more curved) will not change. In this case the amount of moisture evaporating from.
the narrow capillaries is
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The quantity of liquid flowing through the small capillaries can be determined from Poiseuille's law:
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‘The limiting value of Ap, denoted by Ap,, is defined by the condition g = Iy, which gives
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This expression can be used to find the dependence of ¢ on X, the meniscus coordinate in the large capillaries,
after eliminating g, from (2) and (3). We get:
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The condition for which there will still be no fall in the menisci of the narrow capillaries can be written in the
form @g = @y or &p = Apk. The position X, of the meniscus in the large capillaries when the menisci in the small
pores begin to fall can be found from (5), putting ¢ = ¢, to get:
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When X = Xj, the menisci in the small capillaries coincide with the surface of the porous body, and when X > Xy
they begin to withdraw inside the specimen.

The rate of evaporation of moisture from the model during the first stage of dehydration is described by conditions
X<L<XorX«< Xk < L, and is obtained from the equation:
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where iy = DpM(1-¢¢)/RTx, is the evaporation rate from a free water surface under the experimental conditions. The
quantity n = Fy/F, where F = Fy+F,, takes into account the relative numbers of small and large capillaries in the model.
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For a macraporous material (3 = 10 ” cm) the values of ¢ and ¢y are close to 1, giving
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This formula shows that the evaporation rate falls during drying from i =iy at X = 0 to i/iy ~ 1 - n = const for
X > x,. Therefore, in the first period, the constant evaporation rate depends (other things being equal) only on the
relative number of large and small capillaries, i.e., on the structure of the material, Introducing the average humidity,
corresponding to the degree to which the pore space is filled with water, )

W=1—nX/L. (&)
We can go over from equations of the type i(X) to relations of the type i(W). To obtain i as a function of the durationT

of the experiment, the value of i from (6) or (7) must be inserted in the drying equation i = pn(dX/dr), and the resulting
differential equation must be solved. Using{7), the solution has the form:
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For X > x4, it becomes the equation of constant evaporation rate, and the relation betweent and X is linear:

= pnX/i, (1 — n).

For microporous materials (1, = 10™° cm) the gravity term in equations (3) and (5) may be neglected, i.e., random
orientation of the model capillaries is permissible, The solution for the evaporation rate during the first drying period
can then be obtained by replacing @g in (6) by its value from (5), neglecting the quantity pg in comparison with the first
term of the denominator. After simplification we have
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When ¢; ~ 1 and X » X, this expression also becomes an equation of the type i/iy ~# 1 - n. Therefore the first drying
period of the model is always characterized by the presence of a period of approximately constant evaporation.

If the height of the specimen L <X, evaporation of moisture from the system of small capillaries begins after the
emptying of the large pores. The start of the second stage of dehydration is defined by the values 7 =7 and W = Wy,
which can be calculated, taking X =L. To examine the second drying stage, let us assume, as was d_one earlier in [3],
a linear rate of moisture evaporation from the capillaries U. Then the menisci levels in the smaller capiliaries, denoted

by x, will be:

x=pU (1 — n)i. (10)



Differentiating both sides of this expression with respect to T, and inserting the value of dx/dr from the expression

i=op(1 —n)% - (second stage of dehydration), we obtain
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where iy is the evaporation rate at the end of the first drying stage, and may be taken to be ig(1-n). Taking into account
this value for i, we have from (10)

x=VU(x 1. (12)

Hence, replacingt - 4 in (11) by its value from (12), and introducing Uy = (igXg)/p, the linear evaporation rate neglect-
ing film transport, we obtain the final expression for the evaporation rate during the second drying period
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Values of U/Uj for known @, and 1 can be taken from the graphs in reference [3]. In this expression x may be
replaced, as before, by the mean humidity in the second drying stage

W =(1—n)(1-—x/L). (13)

When the height of the specimen L > X 2 transition state is possible, characterized by simultaneous withdrawal
of menisci in both large and small capillaries, Then the distance between the positions of the menisei is Xp+ which
may be found from (5) by introducing q = qg - (1 - n)(qy + qp) instead of g,

The start of the transition region is defined by X = Xpo and its end by X = L, The amount of moisture evaporating
from the large capillaries in this state is

¢» = DpMFy (91 — o/ RT X.
Similarly, the moisture lost from the small capillaries, taking film transport into account [2, 3], is
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The evaporation rate of moisture from the model capillaries in the transition phase, taking ¢y = 1, is
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Substituting the corresponding value for this case
' 1 8nniy [ i X, -1
Xy= 2 L1 *—2—1'"0——."— ) 4+0g|
I ry ) Lra(l—n)\ i X

an accurate expression for i/ i; may be found, after solving the quadratic equation obtained. As before, X can be re-
placed with the mean humidity or the evaporation time,

It should be noted that, for macroscopic bodies, the hydraulic loss entering into (5*) for Xk is usually small in
comparison with pg. For further calculations we may therefore take

X = 2 (1/rg — 1/ry) = const,
4

a considerable simplification. Neglecting the hydraulic loss is permissible, however, only when 1, = 1073 cm for ¢4 & 0,
and when 1, = 107 cm for gy = 0. 9.

Fig. 1shows curves of i/iy vs. the mean humidity of the capillary model. The calculations were done for the
following conditions: r;= 102 cm, = 107 ¢m, t = 20°C and X9 =0.2cm [1,5]. Curves 1and 2 in Fig. 1A refer
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to the case when L < Xy = 126 cm and dehydration proceeds according to (7) and (11"}, Curve 1B describes evaporation
from the system for L > Xj. Fig. 1 shows that here the transition to a falling evaporation rate occurs at a smaller mean
specimen humidity. Fig. 1B gives corresponding curves for small specimen heights.
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Fig. 1. Relative evaporation rate i/i,
vs. mean humidity W for capillary
model: A—-1-n=20,3, L=100cm;
2~—10.7, 100; 3~ 0,3, 200; B —
1-n=0.3, L=2cm; 2 0.7, 2

Values of i/i; in the period of falling evaporation rate have been
computed for two cases: (a) when the contribution of film transport is
negligible, .and we can take U/Uy ~ 1, which may occur, for example,
when ¢y < 0.9 and 1y > 1072 cm [ 2, 3]; (b) when film transport appreciably
increases the rate of evaporation. In the calculations for this case we took
U/U, ~ 10, which, forry = 1073 cm, can be realized for ¢ close to 1
[2,3]. Ascan be seen from the graphs, film movement plays a big part
in maintaining the high evaporation rate throughout most of the drying
time.

The theoretical graphs are evidently of the same form as those ob-
tained experimentally, They show periods of constant and falling evapora-
tion rate with characteristic critical points. The period of constant rate
corresponds to evaporation of moisture from the surface of the small capil-
laries, while these draw water from the larger pores, as has been postulated
by many authors [ 1,4, 6-10].

Analysis of the experimental data of [ 10] shows, in particular, that

the evaporation rate, as the theory requires, falls sharply at the start of the

test, and then remains approximately constant until the meniscus in the
narrow capillaries starts to withdraw. Inreal capillary-porous materials,
such a sharp fall in i at the start of drying, due to the "disconnection™ of
the n-th part of the evaporating surface, is not always in evidence. This is
linked with crookedness of the pores and a lack of continuous large vertical
capillaries. Therefore the drop in meniscus level, as Fig. 2 shows, usually
uncovers a new series of small capillaries, emerging at the surface of a

"second” layer of particles, Thus, the drop in i at the start of drying turns out to be less sharp than analysis of the model
suggests, However, in substances containing a considerable number of intercommunicating large pores, this effect is
seen quite well (coarse peat [ 11], large glass pellets [4]. Naturally, it can be detected only if the porous substance is

completely full of moisture before drying begins,

Roughness of porous bodies, accompanied by an increase in evaporating surface, can lead to a value of i/iy greater

than 1 [1]. In this connection, it may be advisable to introduce a correction
factor ¢ > 1 into (7) to allow for the crookedness of the pores and the surface
roughness of the material, It may, however, be assumed that, when the
meniscus withdraws from the surface of a porous body (Fig. 2), the effective
thickness x4 of the boundary layer increases somewhat (approximately by the
particle radius), causing a corresponding decrease in iy. For the same degree
of roughness (for example, spherical particles) the rate of evaporation from

a surface consisting of larger particles must therefore be less than from a
surface consisting of smaller particles. This conclusion agrees well with

the known experimental data for sand [1].

Evaporation rate curves for the capillary model show a substantial
dependence of the first critical point on the specimen thickness L. An
increase in L (for L > Xk) displaces the point W; in the direction of
greater humidity (Fig. 1A, curves 1 and 3), which is also observed in tests
on various soils [ 12, 13], pellets [4], and sand [1].

Analysis of (5*) shows that an increase in qa, which, other conditions
being equal, is possible only for decreased ¢, causes a decrease in X,
which, in thick specimens (L > Xk)' determines the time of transition to
the period of falling drying rate. In this case there should be an especially
noticeable effect of ¢y on Wy for microporous substances. The increase in
Wy, predicted by the capillary model theory as a result of a decrease in g,
is well borne out by the experimental data for clay [1].

Fig. 2, Diagram illustrating change
of evaporation rate at the start of

drying,

In tests on coarse sand [ 14], direct measurement has shown that the capillary pressure increases in absolute magni-
tude during the first period of drying, and then, when W < Wy, becomes stabilized, balancing the pressure in the smallest
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pores. The change of capillary pressure in the model under examination is of exactly the same character. A lowering
of the liquid level in the large pores of sand during the period of constant drying rate was observed experimentally in
[15]. It follows from [ 14] that the thickness of the dried layer during the second period of drying is proportional to 1 <.
This is also in good agreement with the theoretical relation (12).

It should be noted, however, that the capillary model cannot, of course, be considered universal. It does not
take into account a possible shrinkage of the specimen, essentially the variable progress of drying, and is therefore ap-
plicable only to systems with a rigid framework, It also fails to offer an explanation, for instance, of the effect of the
rate of motion of the air, which requires additional data regarding corresponding changes in xy.

The theoretical curves (Fig. 1) for thick specimens agree well with the curves given in [8] for the evaporation
rate from a meter layer of soil, and also with the experimental data for tall soil columns [ 13, 16]. The evaporation
curves for thin specimens closely resemble in form those obtained for many capillary-porous materials [ 1, 4, 7-9].
Thus, the capillary model, on which the theory is based, gives a satisfactory description of a number of examples of
real disperse materials under conditions of evaporation of moisture. It may therefore be assumed that the relations de -
rived may be used for practical calculations and for predicting the evaporation of moisture from sand and other porous
substances of similar structure to the model.

NOTATION

Fy and Fp — total cross section of large and small capillaries; D — diffusion coefficient of water vapor in air; xy —
reduced thickness of the boundary surface layer [ 1]; p, — partial pressure of saturated water vapor at temperature T;
M - gram-molecular mass of water; R — universal gas constant; p and ¢ — density and surface tension of water; g, and
@; — relative humidity of air above surface of menisci of small capillaries, and same for maximum curvature; 1 —
viscosity of water; Ap — capillary pressure difference causing flow; 74 — radius of curvature of meniscus in small capil-
laries at model surface.
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