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The authors a t tempt  to formulate a theory of evaporation of moisture from capil lary-porous substances 
based on the transport equations for water in liquid and vapor form in the pore space of a mode1 of the 
system. 

This paper is concerned with the rate of evaporation of water from certain models of capil lary-porous substances. 
Our method differs from published work [1] in  seeking a Solution based on the transport equations for mosture in liquid 
and vapor form in the pore space of models of the porous media .  Our first model  consists of a system of ver t ical  cap i l -  
laries of different radii  r 1 and r 2 interconnected throughout their length. 

If the relat ive humidi ty  of  the air in the surrounding medium is held constant at ~00 < 1, evaporation of moisture 
from the surface of the capi l lar ies  begins, and concave menisci  are formed. If ~00 is less than the relat ive vapor pressure 
~ i  above the  menisci  of l imi t ing curvature in the large capi l lar ies ,  then further evaporation leads to a lowering of the 

level  of the menisci ,  character ized by the coordinate X. For isothermal conditions, the amount of moisture evaporated 
from the large capi l lar ies  is 

The relat ive humidi ty  of the air is 

Dp~MF1 (~, , - -  COo) ql = (1) 
RT (X + xo) 

.~1 = e x p  ( - -  2o M/p RTq) .  

Let us assume that the capi l la ry  wails are fully wetted with water, and that the size of the large capi l lar ies  is such that 
the effect of fi lm transport of moisture may  be neglected [2, 8] .  

Until t h e  difference in capi l la ry  pressure at the menisci  of the small  and large capi l lar ies  is sufficient to draw up 
to height X as much water as can be evaporated from the small  capi l lar ies ,  the position of the menisci  in these cap i l -  
laries (which gradually become more curved) will not change. In this case the amount of moisture evaporat ing from. 
the narrow capi l lar ies  is 

q~ = DpsMF2:ffPs'- 
Rrxo (2) 

: p RTr~ 

The quanti ty of l iquid flowing through the smal l  capi l lar ies  can be determined from Poiseuil le 's  law: 

F~r~ 
q2  = 8~qX (A p! p gX), r 

A p--_ 2a(1/rs ~ 1/rl). 

T h e  l imi t ing  value of fXp, denoted by Apk, is defined by the condition r s = r2, which gives 

q~s = qh e x p  . (4) 
pRT 

This expression can be used to find the dependence of ~0 s on X, the meniscus coordinate in the large capi l lar ies ,  
after e l imina t ing  oe from (2) and (8). We get: 

X=(--~)pRTln(ch/eOs)[ 8'q 
r~ 

- - 1  Dps M ( f f J s - % )  ~ p g  . 
R Txo 

@) 
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The condition for which there wilt still be no fall in the menisci of the narrow capillaries can be written in the 
form ~s >- q~2 or Ap ~ APk" The position X k of the meniscus in the large capillaries when the menisci in the small 
pores begin to fall can be found from (5), putting ~o s = ~z, to get: 

( )( )1 XK = 20 1 1 8r~ q2 + P g  - (5') 

r2 rl  r2 2 F~ 

When X -< X k the menisci  in the small capillaries coincide with the surface of the porous body, and when X > X k, 
they begin to withdraw inside the specimen. 

The rate of evaporation of moisture from the model during the first stage of dehydration is described by conditions 
X < L < X k o r X  < X k < L, and is obtained from the equation: 

i =  q , + q z  = i  [ - n x - ~ ~  ( 1 - - n ) ( ' ~ s - - % ) ]  

F 0 [ ( X  -[- x 0) (1 qD0) '-+- 1 - -  % ' 
(6) 

where i 0 = DPsM(1-~o0)/RTx 0 is the evaporation rate from a free water surface under the experimental  conditions. The 
quantity n = F1/F , where F = FI+F2, takes into account the relative numbers of small and large capillaries in the model.  

For a macroporous mater ial  (r 2 >__ 10 -s cm) the values of ~o s and ~ l  are close to 1, giving 

n X  
i/i o ~ 1 (7) 

X + x  o 

This formula shows that the evaporation rate falls during drying from i = i 0 at X = 0 to i / i  0 ~ 1 - n = const for 
X >> x 0. Therefore, in the first period, the constant evaporation rate depends (other things being equal) only on the 

relative number of large and small capillaries, i . e . ,  on the structure of th e material .  Introducing the average humidity, 
corresponding to the degree to which the pore space is filled with water, 

W = 1 - -  n X / L .  (s) 

We can go over from equations of the type i(X) to relations of the type i(W). To obtain i as a function of the duration r 

of the experiment, the value of i from (6) or (7) must be inserted in the drying equation i = pn(dX/dr) ,  and the resulting 

differential equation must be solved. Using (7), the solution has the form: 

io (1- -n )  1 - - n  j 

For X >> x 0, it becomes the equation of constant evaporation rate, and the relation between r and X is linear: 

": = p nX/io (1 - -  n). 

For microporous materials (r= <-- 10 -s cm) the gravity term in equations (3) and (5) may be neglected, i . e . ,  random 

orientation of the model capillaries is permissible. The solution for the evaporation rate during the first drying period 

can then be obtained by replacing ~0s in (6) by its value from (5), neglecting the quantity Pg in comparison with the first 

term of the denominator. After simplif ication we have 

i/io = nxo ( %  - -  %) + 
( X + xo) (I  - -  ~o) 

1 - -  tz 

8"q DpsM2X �9 (6') 

P xoR~T~r~ -k 1 

When ~o 1 ~ 1 and X >> x0, this expression also becomes an equation of the type i / i  0 ~ 1 - n. Therefore the first drying 

period of the model is always characterized by the presence of a period of approximately constant evaporation. 

If the height of the specimen L < Xk, evaporation of moisture from the system of small  capillaries begins after the 

emptying of the large pores. The start of the second stage of dehydration is defined by the values 1- = 1" 1 and W = W 1, 

which can be calculated, taking X = L. To examine the second drying stage, let us assume, as was done earlier in [3], 

a l inear rate of moisture evaporation from the capillaries U. Then the menisci  levels in the smaller Capillaries, denoted 

by x, will be: 

x = p U ( 1  n)/i. (lO) 
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Differentiating both sides of this expression with respect to r ,  and inserting the value of d x / d r  from the expression 

i ~--- p (I - - n )  d ~  (second stage of dehydration), we obtain 

( ),  i2(~--~i) + 1 (~1) 
i = il 2U p= ( l = n  2) 

where i 1 is the evaporat ion rate at the end of the first drying stage, and may  be taken to be i0(1-n). Taking into account 
this value for i, we have from (10) 

x = V 2 U  (~ - ~ 0 .  (12) 

Hence, replacing r - r 1 in (11) by its value from (12), and introducing U 0 = (i0x0)/p, the l inear evaporation rate neg lec t -  
ing fitm transport, we obtain the final expression for the evaporat ion rate during the second drying period 

l i = i o ( 1 - - n )  U -t- I . ( 1 t ' )  

Values of U/U0 for known ~o o and r 2 can be taken from the graphs in reference [3 ] .  In this expression x may  be 
rep!aced,  as before, by the mean humidi ty  in the second drying stage 

W = ( 1 - - n ) ( 1  --x/L). (13) 

When the height of the specimen L > X k, a transition state is possible, character ized by simultaneous withdrawal 
of menisci  in both large and small  capi l lar ies .  Then the distance between the positions of the menisci  is X k, which 
m a y  be found from (5')  by introducing q = q2 - (1 - n)(q 1 + q2) instead of o~. 

The start of the transition region is defined by X = X k, and its end by X = L. The amount of moisture evaporat ing 
from the large capi l lar ies  in this state is 

ql = Dp~MF1 (% -- %)/RTX. 

Similarly,  the moisture lost from the small  capi l lar ies ,  taking f i lm transport into account [ 2, 3], is 

q 2  ~ - -  
p UF~ 9 UF~ 

x X - X K  

The evaporat ion rate of moisture from the model  capi l lar ies  in the transition phase, taking ~o 1 ~ 1, is 

i/i~176 @ X  Xo(1--n)x_x K ( ~ o ) "  

Substituting the corresponding value for this case 

r~ r l  r ~ ( 1 . - n )  io 

) ]_l Xo 4- p g  , 

X 

an accurate  expression for f f i  0 may  be found, after solving the quadrat ic  equation obtained.  As before, X can be re -  
p laced  with the mean humidi ty  or the evaporat ion t ime .  

It should be noted that,  for macroscopic bodies, the hydraulic loss entering into (5 ' )  for X k is usually small  in 
compariso n With pg. For further calculat ions we m a y  therefore take 

2~ 
XK = ( l / r 2 -  l/r1) = const, 

Pg 

a considerable s impl i f ica t ion .  Neglect ing the hydraulic  loss is permissible,  however, only when r 2 _> 10 "s cm for r ~ 0, 

and when r z >_ 10 -4 cm for ~00 ~ 0.9.  

Fig. 1 shows curves of i / i  0 vs. the mean humidi ty  of the cap i l l a ry  model .  The calculat ions were done for the 

following conditions: r 1 = 10 -2 cm, r 2 = 10 "s cm, t = 20~ and x 0 = 0.2 cm [1, 5].  Curves 1 and 2 in Fig. 1A refer 
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to the case when L < X k = 126 cm and dehydration proceeds according to (7) and (11'). Curve 1B describes evaporation 
from the system for L > X k. Fig. 1 shows that here the transition to a failing evaporation rate occurs at a smaller mean 
specimen humidity. Fig. 1B gives corresponding curves for small specimen heights. 
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Relative evaporation rate i / i  0 
vs. mean humidity W for capillary 

model: A - 1 - n =  0.3, L= I00 cm; 

2 -  0.7, 1 0 0 ; 3 - -  0.3, 2 0 0 ; B - -  

1 - n =  0.3, L = 2  e m ; 2 - 0 . 7 ,  2 

Values of i / i  0 in the period of falling evaporation rate have been 
computed for two cases: (a) when the contribution of film transport is 

negligible, and we can take U/U 0 ~ 1, which may occur, for example, 
when ~o 0 < 0.9 and r 2 > 10 - a c m  [2, 31; (b) when film transport appreciably 
increases the rate of evaporation. In the calculations for this case we took 

U/U 0 ~ 10, which, for r 2 = 10 -s cm, can be realized for ~o 0 close to 1 
[2, 3]. As can be seen from the graphs, fihn movement plays a big part 
in maintaining the high evaporation rate throughout most of the drying 

t ime.  

The theoretical graphs are evidently of the same form as those ob 

tained experimentally.  They show periods of constant and falling evapora- 
tion rate with characteristic crit ical points. The period of constant rate 
corresponds to evaporation of moisture from the surface of the small capi l -  

laries, while these draw water from the larger pores, as has been postulated 

by many authors [ 1, 4, 6-10].  

Analysis of the experimental  data of [ 10] shows, in particular, ~hat 

the evaporation rate, as the theory requires, falls sharply at the start of the 

test, and then remains approximately constant until the meniscus in the 
narrow capillaries starts to withdraw. In real capillary-porous materials, 

such a sharp fall in i at the start of drying, due to the "disconnection" of 

the n-th part of the evaporating surface, is not always in evidence.  This is 

linked with crookedness of the pores and a lack of continuous large verticaI 

capiilaries. Therefore the drop in meniscus level,  as Fig. 2 shows, usually 

uncovers a new series of small capillaries, emerging at the surface of a 
nsecond" layer of particles. Thus, the  drop in i at the start of drying turns out to be less sharp than analysis of the model 

suggests. However, in substances containing a considerable number of intercommunicat ing large pores, this effect is 

seen quite well (coarse peat [ 11], large glass peilets [41. Naturally, it can be detected only if the porous substance is 

completely full of moisture before drying begins. 

Roughness of porous bodies, accompanied by an increase in evaporating surface, can lead to a value of i / i  0 greater 

a o 
than 1 [ 1]. In this connection, it may be advisable to introduce a correction 

factor a > 1 into (7) to allow for the crookedness of the pores and the surface 
roughness of the mater ia l .  It may, however, be assumed that, when the 

meniscus withdraws from the surface of a porous body (Fig. 2), the effective 

thickness x 0 of the boundary layer increases somewhat (approximately by the 

particle radius), causing a corresponding decrease in i 0. For the same degree 

of roughness (for example,  spherical par t ic les) the rate of evaporation from 

a surface consisting of larger particles must therefore be less than from a 

surface consisting of smaller particles. This conclusion agrees well with 

the known experimental  data for sand [1]. 

Evaporation rate curves for the capillary model show a substantial 

dependence of the first cri t ical  point on the specimen thickness L. An 

increase in L (for L > Xk) displaces the point Wl in the direction of 

greater humidity (Fig. 1A, curves 1 and 3), which is also observed in tests 

on various soils [ 12, 13], pellets [4], and sand [1]. 

Analysis of (5') shows that an increase in qz, which, other conditions 

being equal, is possible only for decreased ~o 0, causes a decrease in Xk, 

which, in thick specimens (L > Xk) , determines the t ime of transition to 
the period of falling drying rate. In this case there should be an especially 

noticeable effect of ~0 on W 1 for microporous substances. The increase in 

W 1, predicted by the capillary model theory as a result of a decrease in ~0, 

is well borne out by the experimental  data for clay [ 1]. 

Fig. 2. Diagram illustrating change 

of evaporation rate at the start of 

drying. 

In tests on coarse sand [ 14], direct measurement has shown that the capil lary pressure increases in absolute magni-  

tude during the first period of drying, and then, when W < W 1, becomes stabilized, balancing the pressure in the smallest 
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pores. The change of capi l la ry  pressure in the model  under examinat ion is of exac t ly  the same character.  A lowering 
of the liquid level  in the large pores of sand during the period of constant drying rate was observed exper imental ly  in 
[ 15]. It follows from [ 14] that the thickness of the dried layer during the second period of drying is proportional to I 
This is also in good agreement with the theoret ical  relation (12). 

It should be noted, however, that the capi l lary  model  cannot, of course, be considered universal .  It does not 
take into account a possible shrinkage of the specimen, essential ly the variable progress of drying, and is therefore ap-  
p l icable  only to systems with a rigid framework. It also fails to offer an explanation,  for instance, of the effect of the 
rate of motion of the air, which requires addit ional data regarding corresponding changes in x 0. 

The theoret ical  curves (Fig. 1) for thick specimens agree well with the curves given in [8] for the evaporation 
rate from a meter  layer of soil, and also with the exper imental  data for ta l l  soil columns [ 13, 16]. The evaporation 
curves for thin specimens closely resemble in form those obtained for many capil lary-porous materials  [ 1, 4, 7 -9] .  
Thus, the capi l la ry  model,  on which tt~e theory is based, gives a satisfactory description of a number of examples of 
real disperse materials  under conditions of evaporation of moisture. It may therefore be assumed that the relations de 
rived may  be used for prac t ica l  calculations and for predict ing the evaporation of moisture from sand and other porous 
substances of similar structure to the model .  

NOTATION 

F 1 and F z - total  cross section of large and small  capil lar ies;  D - diffusion coefficient  of water vapor in air; x 0 - 
reduced thickness of the boundary surface layer [ 1] ; Ps - part ia l  pressure of saturated water vapor at temperature T; 
M - g ram-molecu la r  mass of water; R - universal gas constant; p and o - density and surface tension of water; ~o s and 
~ 2  - relat ive humidi ty  of air above surface of menisci  of small  capil laries,  and same for maximum curvature; ~ - 
viscosity of water; Ap - capi l la ry  pressure difference causing flow; r s - radius of curvature of meniscus in small  capr i -  

1aries at model  surface. 
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